framatome

FILTRATION SOLUTIONS

NSA / INPO INNOVATION EXPO

May 21 - 22, 2018

Ron Jaworowski Framatome Nuclear Products

Introduction

- Current US Nuclear Reactor population is a result of widespread development of Gen II reactors from 1965 to 1985
- Most nuclear plants operated at refueling cycles of 12 months and refueling durations of 3 months between 1980 and 1990.
- Fuel technology improvements have allowed the ability to now operate today at 18 to 24 month refueling cycles and outages averaging just over 30 days.
- Changes to the fuel operations, however, have resulted in needed chemistry changes.
- These changes have resulted in a need to place consideration on plant filtration.

Role of Filtration

- Filtration systems originally consisted of mainly strainer assemblies, not critical to plant operations.
- Filtration now considered critical to plant operations due to role they play in removing foreign material, corrosion products, and maintenance/reduction of plant radiation levels.
- Cost of disposal of nuclear waste is also rising, so protection of costly plant systems is of growing importance.

Plant Filtration Development

- FRAMATOME (originally B&W) is an OEM for seven US reactors (six operational)
- In 1983, FRAMATOME evaluated the supply of filters from the OEM PALL, and determined that a more cost effective and improved product was needed.
- Special consideration of filtration for nuclear applications:
 - High Flow Rates
 - Extended Filter Life
 - Remote Handling Requirements
 - Configuration Problems
 - System Upgrade

Cartridge Filter Development

framatome

Specialty Adaptor Development

- Multiple Cartridge OEM Designs
- Spent Cartridge Handling Difficulty
- Filter Basket Disposal Usually Required
- Requires Significant Pre-Assembly
- High Potential for By-Pass

Specialty Adapter Development – The Condition

Property of Framatome © Framatome p.7 All rights reserved, see liability notice

Specialty Adapter Development – The Solution

Disposable Media Filtration

- Waste Volume Reduction
- Reduced Waste Disposal Costs
- Equivalent OEM Filter Performance
- Reduced Filter Costs
- No Vessel Modification Required

Disposable Media Filtration – Andale Strainer Condition

Disposable Media Filtration – Andale Strainer Solution

Disposable Media Filtration – PALL 007 & 022 Applications

- 300 series stainless steel adapter insert
- Provides needed structural integrity and sealing
- Prevents bypass
- Internal or external bottom Adapter to Vessel seal
- Seal material Silicon RTV
- Handling Tools Included

framatome

Disposable Media Filter Cartridge Installation & Removal

With the Adapter Seated Securely in Vessel, Disposable Media Pack is Inserted and Removed into Adapter Either Manually or with Remote Tooling

Disposable Media Filtration – Waste Reduction

Net Volume Reduction Ratio from 33:1 to potential 54:1

Traditional Bag Filtration

Pros

- Readily Available
- Easy to Install
- Inexpensive
- Long History of Use
- Cons
 - Limited Filtering Ability for Lower Micron Applications
 - Large Volume of Waste Generated
 - Easily Bypassed
 - Easily Blinds Off

Traditional vs. Pleated Bag Filtration

5 X

Evolution of Mechanical Filtration Media

Cellulose – 1838

Glass Fiber – 1932

Polypropylene – 1954

Fundamentals of Mechanical Filtration – Billiard Ball Effect

Fundamentals of Mechanical Filtration – Excessive Flux Degradation

Fundamentals of Mechanical Filtration – Submicron Filtration

Nanofiber Filtration

- Designed for removal of activated colloids and sub-0.1 micron water-borne contaminants
- Ceramic nanofibers are grafted onto structural backbone of microfibers to for pore structure
- Submicron particle capture via electro-adsorption

NTI Nanofiber Media

Boehmite "needles" grafted to backbone

Contaminant Removal via Electroadsorption

Nanofiber Filtration

- Nanofiber media flows like higher micron mechanical filter, yet captures submicron particles.
 - <u>NANO-424</u>, average pore size ~ 2.7 micron with removal efficiency > 99.99% at 0.027 micron
 - <u>NANO-421</u>, average pore size ~ 9 micron with removal efficiency > 99 % at 0.027 micron
- Outperforms industry recognized 0.1 µm resin impregnated glass fiber media in all critical metrics

Nanofiber Fiber Technology

Boehmite nanofibers 2 nm dia x 250 nm lg

Nanofiber Filtration – Media Performance Comparison

Comparative OE for 5 & 1 µm Conventional vs. Nanofiber Filters

Data provided by: Entergy Palisades

Property of Framatome © Framatome p.23 All rights reserved, see liability notice

framatome

Nanofiber Filtration – Test Performance Data

Wet Tensile Machine

Data provided by: IBR Laboratories (Grass Lake, MI)

Wet Mullen (psi)

Wet Tensile Cross

framatome

Property of Framatome © Framatome p.24 All rights reserved, see liability notice

Filtration Strategy Development

- Plant Operations
- Chemistry Changes
- Radiation Level Management
- Radwaste Generation & Processing

Filtration System Development

- FRAMATOME has developed the following systems to support the current filtration system needs:
 - Source Term Extended Reduction (STER)
 - OPTIMIZER
 - DECOM-EX Decontamination System
 - Skid Mounted High Filtration & Media System (HFM)

Source Term Extended Reduction (STER)

A modularly designed filtration vessel specifically to meet the need for large volume of plant water and wastewater cleanup.

Source Term Extended **Reduction (STER) - Filter**

Uses high capacity out-to-in filter with unique flow design

FLOW PATTERN

Property of Framatome © Framatome All rights reserved, see liability notice

OPTIMIZER Filtration System

Designed specifically to meet the need of submicron filtration by reducing filter flow rate per square inch to optimal level without degradation of overall water cleaning capability.

DECOM-EX Decontamination System

 Designed for capturing a large volume of low-level radioactive waste (LLRW) solids in a clean-up operation, Decom-EX[™] provides significant collection space within the filter to accomplish the task.

High Filtration & Media System

An all-in-one two-stage filtration and ion-exchange vessel combination, with variable speed control and shielding, designed to operate the entire duration of a refueling outage and be installed and removed using one crane pick for each.

Questions?

Property of Framatome © Framatome p.32 All rights reserved, see liability notice

