Robotic Underwater Decontamination and Robotic Inspection Services

Presented by
Javier Banuelos
Agenda

• Background
• Refueling cavity decon
• Established methods
• Robotic decon tooling
• FENOC decon project
• Robotic decon procedure
• Results
• Robotic Inspection Services
Core Competencies

- Robotics and Manipulators
- Inspection/NDE Tooling and Services
- Rad-Tolerant VT Systems
- Nuclear Digital I&C Systems
- Rotary & Linear Actuation
Decon to Reduce Dose

- BWR and PWR plant operators reduce dose by decontaminating surfaces
 - Refueling cavity
 - Drywell heads and other curved surfaces
 - Equipment pools and pits
 - Spent fuel pool
 - Fuel transfer canals
 - Coated and non-coated surfaces

Industry challenge to improve methods and tooling
Established Methods

- Manual scrubbing
- Strippable coatings
- High-pressure washing
- Hydrolasing
- Legacy automated tooling

Effective, but can cause increased dose, radiological waste, and Outage schedule
Robotic Decon Solution

- Hybrid ROV-crawler platform
- ROV mode – vectored and vertical thrusters provide maneuverability and positioning
- Flow-less vortex generator for adhering to all surfaces:
 - Flat
 - Curved
 - Horizontal / vertical
 - Interferences and seams
- Integrated cleaning system
- Interfaces with filtration system
Decon Tool Operation

• Transitions freely between “flying” and “crawling” modes
• Flow-less vortex generator creates up to 60 lb. of suction force for adhering to surfaces
• Quick retrieval performed from poolside or platform
FENOC Decon Project

- Perry Nuclear Power Plant
- FENOC approached Diakont to develop robotic decon system
- Initial decon in Spring 2017 Outage
Decon System Team

• 3-man team
 – ROV operator and navigator
 – Roving technician for hose and cable management
 – Rotating equipment technician
Decon Procedure

• FME check
• Control station set up on the refueling floor away from refueling cavity edge
• System function check
• Tool connected to vacuum pump in cavity
• Tool deployed into water via crane
 – Attention paid to no disrupt water surface
• HD PTZ camera deployed to monitor operations
Decon Procedure

• Decontaminated floors, walls, and curved drywell head
• Cleaning brush operated at various speeds for different sections
 – Slower speeds used for areas with high levels of debris to avoid excessively disturbing the material
 – Process monitored to ensure vacuum captured all dislodged material
Dose-Saving And Outage-Shortening

• Successful underwater decontamination during Spring 2017 Outage
• No additional manual decon required after drain-down
• Contamination levels were reduced to <50K dpm/100 cm²
• Plant met INPO/Industry collective radiation exposure goals
• Plant made plans to use tool to examine underwater boots next summer in the suppression pool
Robotic Pipeline Inspection

- Self-propelled robotic crawler for inspecting buried pipelines
- Driven by robot operator in real time
- Robust track system presses into ID of pipe for traction and vertical navigation
- Able to navigate:
 - Vertical Sections (90 degrees up or down)
 - Unbarred tees / Horizontal tees
 - Inclines and declines
 - 90 degree bends
 - Back-to-back bends
 - Reducers
 - Does not require launchers, receivers, or flow

Upper Track – Raises up and presses on the top of the pipe

Robot’s center of gravity raises up to accommodate multiple pipe diameters without exiting pipe
North Anna
Aux Service Lines

- Two 24-inch auxiliary supply lines from the ASW valve pit north of the station’s protected area fence to the valve pit in the turbine building
- The two lines were not receiving impressed current in alignment with output of CP Subsystem
- Because the segments were not receiving impressed current as designed, it was unknown if the sleeved segments had experienced OD corrosion
- Sleeved lines could not be excavated and inspected
Access Point

Operator removed valve for opening.
Pipeline Inspection
Post Inspection
Inspection Results

• Successfully inspected a total of 300.9’ of pipeline
• Verified pipeline integrity and system put back into service
• The Inspection method eliminated the need for excavations and personnel pipe crawls
Online Tank Floor Inspection

- Class 1 Div. 1 system
- Complete NDE coverage, including annular ring critical area
- Motorized brush and plow for sludge displacement
- Real-time automated tank floor mapping
- 3D imaging sonars for obstacle avoidance
- Fail-safe redundancy and emergency retrieval features

Utilizes a combination of MFL for detection, and a 96-element UT array for sizing
System Deployment

- Temporary hatch fitted in place of manway blind following roof launch
- Cable seals to block VOC emissions
- Environmental basin fastened around manway during robot recovery

Hatch seal with vapor seal for umbilical cable

1) Inspection tool
2) Deployment module
3) Operation vehicle (outside berm)
Contact

Javier Banuelos
jbanuelos@diakont.us.com